首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2186篇
  免费   183篇
  国内免费   131篇
  2024年   2篇
  2023年   23篇
  2022年   26篇
  2021年   27篇
  2020年   72篇
  2019年   91篇
  2018年   73篇
  2017年   64篇
  2016年   54篇
  2015年   51篇
  2014年   75篇
  2013年   128篇
  2012年   50篇
  2011年   78篇
  2010年   39篇
  2009年   84篇
  2008年   70篇
  2007年   96篇
  2006年   81篇
  2005年   103篇
  2004年   79篇
  2003年   58篇
  2002年   68篇
  2001年   56篇
  2000年   60篇
  1999年   63篇
  1998年   53篇
  1997年   57篇
  1996年   49篇
  1995年   38篇
  1994年   49篇
  1993年   61篇
  1992年   56篇
  1991年   37篇
  1990年   44篇
  1989年   48篇
  1988年   47篇
  1987年   29篇
  1986年   47篇
  1985年   33篇
  1984年   38篇
  1983年   23篇
  1982年   33篇
  1981年   21篇
  1980年   25篇
  1979年   13篇
  1978年   13篇
  1977年   4篇
  1976年   7篇
  1974年   2篇
排序方式: 共有2500条查询结果,搜索用时 0 毫秒
1.
The effect of NO2 fumigation on root N uptake and metabolism was investigated in 3-month-old spruce (Picea abics L. Karst) seedlings. In a first experiment, the contribution of NO2 to the plant N budget was measured during a 48 h fumigation with 100mm3m?3 NO2. Plants were pre-treated with various nutrient solutions containing NO2 and NH4+, NO3? only or no nitrogen source for 1 week prior to the beginning of fumigation. Absence of NH4+ in the solution for 6d led to an increased capacity for NO3? uptake, whereas the absence of both ions caused a decrease in the plant N concentration, with no change in NO3? uptake. In fumigated plants, NO2 uptake accounted for 20–40% of NO3? uptake. Root NO3? uptake in plants supplied with NH4+plus NO3? solutions was decreased by NO2 fumigation, whereas it was not significantly altered in the other treatments. In a second experiment, spruce seedlings were grown on a solution containing both NO2 and NH4+ and were fumigated or not with 100mm3m?3 NO2 for 7 weeks. Fumigated plants accumulated less dry matter, especially in the roots. Fluxes of the two N species were estimated from their accumulations in shoots and roots, xylem exudate analysis and 15N labelling. Root NH4+ uptake was approximately three times higher than NO3? uptake. Nitrogen dioxide uptake represented 10–15% of the total N budget of the plants. In control plants, N assimilation occurred mainly in the roots and organic nitrogen was the main form of N transported to the shoot. Phloem transport of organic nitrogen accounted for 17% of its xylem transport. In fumigated plants, neither NO3? nor NH4+ accumulated in the shoot, showing that all the absorbed NO2 was assimilated. Root NO3? reduction was reduced whereas organic nitrogen transport in the phloem increased by a factor of 3 in NO2-fimugated as compared with control plants. The significance of the results for the regulation of whole-plant N utilization is discussed.  相似文献   
2.
3.
4.
5.
6.
The photosynthetic reaction center complex from the green sulfur bacteriumChlorobium vibrioforme has been isolated under anaerobic conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals polypeptides with apparent molecular masses of 80, 40, 30, 18, 15, and 9 kDa. The 80- and 18-kDa polypeptides are identified as the reaction center polypeptide and the secondary donor cytochromec 551 encoded by thepscA andpscC genes, respectively. N-terminal amino acid sequences identify the 40-kDa polypeptide as the bacteriochlorophylla-protein of the baseplate (the Fenna-Matthews-Olson protein) and the 30-kDa polypeptide as the putative 2[4Fe-4S] protein encoded bypscB. Electron paramagnetic resonance (EPR) analysis shows the presence of an iron-sulfur cluster which is irreversibly photoreduced at 9K. Photoaccumulation at higher temperature shows the presence of an additional photoreduced cluster. The EPR spectra of the two iron-sulfur clusters resemble those of FA and FB of Photosystem I, but also show significantly differentg-values, lineshapes, and temperature and power dependencies. We suggest that the two centers are designated Center I (with calculatedg-values of 2.085, 1.898, 1.841), and Center II (with calculatedg-values of 2.083, 1.941, 1.878). The data suggest that Centers I and II are bound to thepscB polypeptide.  相似文献   
7.
We investigated the synthesis and translocation of amino compounds in Parasponia, a genus of the Ulmaceae that represents the only non-legumes known to form a root nodule symbiosis with rhizohia. In the xylem sap of P. andersonii we identified asparagine. aspartate. glutamine, glutamated significant quantities of a non-protein amino acid. 4-methylglutamte(2-amino-4-methylpentanedioic acid). This identification was confirmed by two methods, capillary gas chromatography (GC) electron ionization (El) mass spectrometry (MS) and reverse phase high pressure liquid chromatography (HPLC) analysis of derivatized compounds. In leaf, root and nodule samples from P. andersonii and P. parviflora we also identified the related compounds 4-methyleneglutamate and 4-methyleneglulamine. Using 15N2 labelling and GC-Ms analysis of root nodule extracts we followed N2 fixation and ammonia assimilation in P. andersonii root nodules and observed Label initially in glutamine and subsequently in glutamate, suggesting operation of the glutamine synthetase/glutamine:2-oxoglutarate aminotransferase (GS/GOGAT) pathway. Importantly, we observed the incorporation of significant quantities of 15N into 4-methylglutamate in nodules, demonstrating the de nova synthesis of this non protein amino acid and suggesting a role in the translation of N in symbioticParasponia.  相似文献   
8.
We have measured the electronic spin lattice relaxation time T1 in the temperature range 4 K-10 K, by microwave power saturation on the 3Fe ferredoxins from Desulfovibrio gigas and Azotobacter vinelandii. The comparison with the results previously obtained on other iron sulfur proteins emphasizes the particularly fast relaxing properties of the E.P.R. signal in 3Fe ferredoxins. These results support the models of the active site which predict very low lying excited levels.  相似文献   
9.
Sulfur bacteria such as Beggiatoa or Thiomargarita have a particularly high capacity for storage because of their large size. In addition to sulfur and nitrate, these bacteria also store phosphorus in the form of polyphosphate. Thiomargarita namibiensis has been shown to release phosphate from internally stored polyphosphate in pulses creating steep peaks of phosphate in the sediment and thereby inducing the precipitation of phosphorus-rich minerals. Large sulfur bacteria populate sediments at the sites of recent phosphorite formation and are found as fossils in ancient phosphorite deposits. Therefore, it can be assumed that this physiology contributes to the removal of bioavailable phosphorus from the marine system and thus is important for the global phosphorus cycle. We investigated under defined laboratory conditions which parameters stimulate the decomposition of polyphosphate and the release of phosphate in a marine Beggiatoa strain. Initially, we tested phosphate release in response to anoxia and high concentrations of acetate, because acetate is described as the relevant stimulus for phosphate release in activated sludge. To our surprise, the Beggiatoa strain did not release phosphate in response to this treatment. Instead, we could clearly show that increasing sulfide concentrations and anoxia resulted in a decomposition of polyphosphate. This physiological reaction is a yet unknown mode of bacterial polyphosphate usage and provides a new explanation for high phosphate concentrations in sulfidic marine sediments.  相似文献   
10.
We present evidence for a dimorphic life cycle in the vacuolate sulfide-oxidizing bacteria that appears to involve the attachment of a spherical Thiomargarita-like cell to the exteriors of invertebrate integuments and other benthic substrates at methane seeps. The attached cell elongates to produce a stalk-like form before budding off spherical daughter cells resembling free-living Thiomargarita that are abundant in surrounding sulfidic seep sediments. The relationship between the attached parent cell and free-living daughter cell is reminiscent of the dimorphic life modes of the prosthecate Alphaproteobacteria, but on a grand scale, with individual elongate cells reaching nearly a millimeter in length. Abundant growth of attached Thiomargarita-like bacteria on the integuments of gastropods and other seep fauna provides not only a novel ecological niche for these giant bacteria, but also for animals that may benefit from epibiont colonization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号